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ABSTRACT. In this paper, the problems of unsteady unidirectional flow of Maxwell fluid in a porous media are examined. The 

governing equations of flow are modelled, by employing the modified Darcy's law of a Maxwell fluid. Using Sumudu transform, analytical 

solutions of modelled equations are established for the following problems: (i) unsteady Couette flow, (ii) unsteady Poiseuille flow and (iii) 

unsteady generalized Couette flow. Since the Sumudu transform has units preserving properties, therefore aforementioned problems are 

solved without restoring the frequency domain. This is one of many strength points for this new transform, especially with respect to 

applications in problems with physical dimensions. Further, the solutions for the velocity fields that have been obtained; have complete 

agreement with those established by using the Laplace transform. Moreover, the corresponding solutions for Newtonian fluids as well as 

those for Maxwell fluids can be obtained as limiting cases of our solutions. Finally, the impact of relevant parameters on the velocity of 

fluids is also analyzed by graphical illustrations. 
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1. INTRODUCTION 
The non-Newtonian fluids have been mainly classified under the 

differential, rate and integral types. The Maxwell fluids [1] are the 

subclass of non-Newtonian fluids and are the simplest subclass of 

rate type fluids which take the relaxation phenomena into 

consideration. It was employed to study numerous problems due to 

their relatively simple structure [2 - 4]. Moreover, one can 

reasonably hope to obtain analytical solutions from this type of 

Maxwell fluid. This thing motivates us to choose the Maxwell 

model in this study. The analytical solutions are important as these 

provide standard for checking the accuracies of many approximate 

solutions which can be numerical or empirical. They can also be 

used as tests for verifying numerical schemes that are developed for 

studying more complex flow problems. 

All the above investigations of hydrodynamic fluids curbed the 

flows of Maxwell fluids in the non-porous medium [2 - 4]. Besides 

that the flow in porous media occurs widely in natural phenomena 

and in industrial applications such as oil recovery, food processing, 

building insulations, heat-storage beds, dispersion of chemical 

contaminants in various processes in the chemical industry and in 

the environment, to name just a few. Many of these applications 

involve non-Newtonian fluids in a porous media. But very little 

attention has been given to the flows of non-Newtonian fluids in 

porous media. Such investigations further narrow down when 

modified Darcy's law of non-Newtonian fluids have been taken into 

account. Most recently, some researches study the flow of non-

Newtonian fluids in porous media [5 - 9] and references there in. 

The aim of this communication is to examine the unsteady flows of 

a Maxwell fluid in a porous medium. The arrangement of the paper 

is as follows. In section 2, we document the governing equations. 

This is followed by the analysis of three transient flow problems 

between two parallel plates: (i) Couette flow (flow due to one of 

the plates starts suddenly and other being rest), (ii) Poiseuille flow 

(flow due to the constant pressure gradient between two fixed 

plates), (iii) generalized Couette flow (due to a constant pressure 

gradient between the plates one of them starts suddenly and other 

being rest). 

To solve the aforementioned problems, we employ the Sumudu 

transform. It is an integral transform which was first time 

introduced by [10]. Sumudu transform can help to solve the 

complex applications in science and engineering, due to its simple 

formulation and consequent special and useful properties. Having 

scaling and units preserving properties, it may be used to solve 

problems without resorting to the frequency domain. This is one of 

many strength points for this new transform, especially with respect 

to applications in problems with physical dimensions. In fact, the 

Sumudu transform which is itself linear, preserves linear functions, 

and hence in particular does not change units [11, 12]. [13, 14] 

have shown it to be the theoretical dual to the Laplace transform, 

and hence ought to rival it in problem solving. This new transform 

was further developed and applied to many problems by various 

researchers [15 - 19] and references there in. 

The Sumudu Transform is defined [10, 13] by 
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In this work, we employ this technique to the unsteady 

unidirectional non-Newtonian fluid problems. All the expressions 

for velocity profiles are constructed for large and small times. To 

best our knowledge, Sumudu transform technique is first time 

applied to unsteady non-Newtonian fluid problems. It does not 

figure out in literature. Further, another new type of analytical 

solutions of the proposed problems is obtained, by using the 

composite function technique. At the end, several results of interest 

are obtained as the particular cases of the problems considered. 

2. Governing equations 
The continuity equation and the balance of linear momentum in a 

porous medium are 

0, V                                                                          (2)  

( ) ,div
t

 
 

      

V
V V f T R                                   (3)  

where V  is the velocity field,   is the density, f  is the 

body force per unit mass,    is the gradient operator, R  is the 

Darcy’s resistance and T  is the Cauchy stress tensor in a 

Maxwell fluid satisfies the following expression       

1; ( ) ,Tp
t

 
 

          
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S
T I S S V S LS SL A            (4)       

in which p  is hydrostatic pressure, I  is the unit tensor,   is the 

relaxation time, S  is the extra-stress tensor,   is the dynamic 

viscosity of the fluid, L  is the velocity gradient 1 ,T A L L  is 

the first Rivlin-Ericksen tensor and superscript T  indicates the 

transpose operation. 

According to Tan and Masuka [5], Darcy's resistance in an 

Oldroyd-B fluid satisfying the following expression: 
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where 
r  is the retardation time,   is the porosity and k  is the 

permeability of the porous medium. For Maxwell fluid 0r   and 

hence                                                                                              

1 .
t k



 

   
 

R V                                                             (6) 

We select a velocity field of the following form 

( ( , ), 0, 0),u y tV             (7)                                                 

where u is the velocity in the x  direction. Further we assume that 

extra stress tensor is a function of y  and t  only i.e. 

( , ).y tS S By using Eq. (7) into Eq. (4)2, and remember that at 

0t   there is no motion of the fluid, we obtain 

S S S =S 0,xz yy yz zz    and 
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Using Eq. (6) into Eq. (3), we have                                          
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In the absence of body forces Eqs. (7) - (9) gives                                                                    
2
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where /    is a kinematic viscosity and  / .k   

 
3. Unsteady Couette flow 

Consider the flow between two infinite parallel rigid plates distance 

h  apart. Both plates are initially at rest and the plate at 0y   is 

fixed for all the time. The fluid motion starts suddenly due to 

constant velocity of the plate at y h  in its own plane.  

The governing equation with boundary and initial value problem is 
2 2
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In this case, the solution is given by 
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If the upper plate is fixed and the lower one moves at a constant 

Speed ,V  then the velocity distribution is 
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3.1.  Solution for small time 

In this section we find the solution by Sumudu transform technique, 

defined by Eq. (1). The Sumudu transform of Eq. (11) and the 

boundary conditions (12) take the following forms 
2

2

2

( , )
( , ) 0,

d G y w
s G y w

dy
                                                    (14)       

(0, ) 0, ( , ) ,G w G h w V              (15)   

where 
2

2

2
.

w w
s

w

 



  
  
 

  

The solution of Eq. (14) by using boundary conditions (15) can be 

written as                               
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.
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The inverse sumudu transform is defined by [12] in of the form 
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Sumudu inversion of Eq. (16) yields 
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In Eq. (18), 0w   is a simple pole. Therefore residue at 0w   is                                                           
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we find that 
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and / , 1, 2, 3, . . .,n n h n     are the zeros of Eq. (21), then  
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Adding 1 1(0), ( ) and ( ),n nRes Res w Res w  a complete solution is 

obtained as 
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The solution obtained in Eq. (22) is identical to those given by 

Laplace transform method taking 0, and 0N    [Eq. 25, 20]. 

In addition, let us give another expression for the velocity field 

( , ),u y t  for this we rewrite Eq. (18) in the form of composite 

function 
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We consider the functions 
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Now we have  
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We find the inverse Sumudu transform of the function ( , )F y q  by 

means of the residue theorem for this  
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Using the values of ( , )g z t and ( , )f y z  in Eq. (27), we get 
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Using the expressions (A1) - (A4) from appendix and after 

simplification Eq. (28) becomes 
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From Eq. (23), we have                       
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Using Eq. (29) into the above Eq. (30) and after solving integration 

by parts, we obtain a new expression for velocity  
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4. Unsteady Poiseuille flow 

In this section, we discuss another type of unsteady flow situation, 

that the fluid between two parallel plates which are stationary is set 

in motion due to sudden application of a constant pressure gradient 

is termed as the poiseuille flow. Suppose that the fluid is bounded 

by two parallel plates at ,y h   and it is initially at rest and fluid 

starts suddenly due to a constant pressure gradient. 

The governing equations is (10), and the initial and boundary 

conditions are 
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where 2h  is the distance between two parallel plates. 

It then follows that a solution of the following form exists: 
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4.1. Solution for small time 
After taking Sumudu transform, Eq. (10) and boundary conditions 

(32) give 
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( , ) 0, ( , ) 0,G h w G h w                                          (35)                                                                                        

The solution of Eq. (38) by using boundary conditions (35) can be 

written as  

2

( , ) 1 cosh
1 .

cosh

G y w sy

dp s sh

dx

  
  

 
                                               (36) 

The inverse Sumudu transform of Eq. (36) is                                         

2

( , ) 1 e cosh
1 .

2 ( ) cosh

r i wt

r i

u y t sy
dw

V i w w w sh  

 

 

 
     

                    (37)  

For the inverse solution of Eq. (37), we employ the similar 

procedure as in the first half of section 3.1. In order to avoid the 

detail, the solution is given by   

1

2

1

1 1 2 1

2

2
02 2 1 2

( , ) cosh e cosh
1 1

cosh ( ) cosh1

e cosh
1 ( 1) (2 1)

( ) cosh

w t

w t
k

n
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s y
k

w w w s h h





  



 
    

    
 

   
       

   


 

                                                                   

1

2

2 3

1 1 1 2 1 3 1

2 3

2 1 2 2 2 3 2

e

( ) (2 1)
cos ,

2e

( )

k

k

w t

k k k k

w t

k k k k

w d w d w d w k
y

h

w d w d w d w

 



 
 

     
    

 
    

          (38)                                                                 

where  

1 2

1 1 4 1 1 4
,

2 2
w w

 

 

     
   
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2 2

1 1 2 2
1 2

2

1 2 3

,

(1 2 ), 2 , 2 .

w w w w
s s

d d d

   

 

  

   
 

   

 

The solution obtained in Eq. (38) is identical to those given by 

Laplace transform method taking 0, and 0N    in [Eq. (42), 

20]. 

 

For another expression of the velocity ( , ),u y t  we rewrite Eq. (37) 

in the form of composite function 

2

( , ) 1
( , ).

1 ( )

G y q
A y q

dp q q q

dx

 




 



         (39)                                  

We consider the functions  

2

cosh

( , ) , ( ) .

cosh

y
q

F y q p q q q
h

q


 



 
 
    
 
 
 

                         (40)             

Now we have  

sinh ( )

( , ) ( )( ) .

sinh ( )

y
p q

A y q F p q
h

p q





 
 
  
 
 
 

         (41)    

Now, we find the inverse Sumudu transform of the function 

( , )F y q by means of the residue theorem for this  

sinh ( ) 0,
h

p q


 
 

 
    

2

2

(2 1)
, 1, 2, 3, . . .,

2
k

k
q k

h

  
    

 
   

1

2
1

( , ) [ ( , )] ( 1) (2 1)

(2 1)
cos e .

2
k

k

k

q t

f y t S F y q k
h

k y

h












    

 
 
 


                         (42)    

1 1

0

( , ) [ ( , )] [( )( )] ( , ) ( , ) .a y t S A y q S F p q f y z g z t dz



           (43)   

Using the values of ( , )g z t  and ( , )f y z  in Eq. (43), we get 

 

2
2

1

2 1

2

0 0 0

(2 1)
( , ) e ( 1) (2 1)cos

2 2

( )
2 e ,

( 1)!(2 1)!
k

t

k

k

n
zan n

n

t k y
a y t k

h h

S J st z dz
n n


 







 




 
    

 



 



  

                    (44)                             

where 

2

2

(2 1) 1
.

2 4
k

k
a

h

 




 
   

 
 

Using the same expressions (A1) - (A4) from appendix and after 

simplification we get 

2

2
1

( 1) (2 1) (2 1)
( , ) e cos sin .

2

t k

k

k k

ak k y
a y t t

hh a


 







    
        

  (45)             

Now from Eq. (39), we let  

2

1
( ) .

( )
B q

q q q 


 
 

Solving ( )B q by partial fraction, we have 

 1 2

2

1 41 1
( ) ( ) e cosh

2

1 41
e sinh .

21 4

t

t

b t S B q t

t







  



 






 
     

 

 
     

                       (46)  

From Eq. (39), we have 

( , )
( ) ( ) ( , ),

1

G y q
B q B q A y q

dp

dx

  



               

Using the convolution theorem 1[ ( ), ( , )] ( )( )S B q A y q b a t     

0 0
( ) ( ) ( ) ( ) ,

t t

a s b t s ds a t s b s ds     we obtain a new expression for the 

velocity field ( , )u y t  

2 2

2
1

2
2

1

1 4( , ) 1
1 e cosh e

21 1 4

1 4 4 ( 1) (2 1) (2 1)
sinh cos

2 1 4 2

2 ( 1) (2 1) (2 1)
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2(1 4 )
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t t

k

k k

t k

k k k

k
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t
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k k y
t

h a h

k k y

h ha a

a
t

 





 



  

 

  





 









 
        

 

     
        

   
  

  

 
  
 





2

1

4 ( 1)
2 cos e

(2 1)

(2 1)
cos

2

1 4 1 41
cosh sinh

2 21 4
.

1
cos sin

2

t k

k
k

k

k k

k

a
a t

k

k y

h

t t

a a
t t

a


 



 

 

 





   
        

 
 
 

     
           

 
    

        
    


     (47)                                                                                                                                               

 

5. Unsteady generalized Couette flow 

Suppose the fluid is bounded by two parallel plates at 0y  and 

,y h  and it is initially at rest. The fluid starts suddenly due to a 

pressure gradient and by the motion of the upper plate. The 

governing equations are (10), and the initial and boundary 

conditions are: 

(0, ) 0, for all ,

( , ) , for 0,

( , 0)
( , 0) 0, for 0 0.

u t t

u h t V t

u y
u y y

t



 


   



                                       (48)                                                                                          

Employing the similar procedure of section 3, we have 

2 2 2 2

2 2 2 2
1

( , ) sinh sinh sinh ( )
1

sinh sinh sinh

2 ( 1) (1 ( 1) )
sin ( ),

n n

n

n

u y t my my m h y

V mh mh mh

n m h n y
T t

n m h n h

 

 





 
     

 

       
    

   


          (49)                                                                      

where,    / / .dp dx V     

If the upper plate is held fixed and the lower plate move at a speed 

,V  then the velocity distribution becomes 

2 2 2 2

2 2 2 2
1

( , ) sinh ( ) sinh sinh ( )
1

sinh sinh sinh

2 ( 1) (1 ( 1) )
sin ( ),

n n

n

n

u y t m h y my m h y

V mh mh mh

n m h n y
T t

n m h n h

 

 





  
     

 

       
    

   


 

 
5.1. Solution for small time 

In this section, after taking Sumudu transform Eq. (10) becomes 

Eq. (34) and initial-boundary conditions (48)  becomes (15) 

respectively, and adopting the same method of solution in section  

4.1, we arrive at 
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e sinh sinh ( )
1

( ) sinh sinh

2

w t

w t

u y t my my m h y

V mh mh mh
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   
   
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w d w d w d w

n n
y h y

h h



 





 









   
    
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     

    





                                                                                       

The solution obtained in Eq. (50) is identical to those given by 

Laplace transform method taking 0, and 0N    in [Eq. (48), 

20]. 

For another expression of the velocity field, we adopt the same 

procedure as in the second half of section of 4.1, and we get the 

following new expression of the velocity field  
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(51)                                             

                                                                        

6. Special Cases 
The Maxwell fluid in porous media is the general case of the 

Newtonian fluid. When 0, and 0,    it reduce to the 

Newtonian fluid and when 0   it gives the results of Newtonian 

fluid in Porous media. Also when 0   it gives the results of 

Maxwell fluid without porous media. 
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8. CONCLUSIONS AND NUMERICAL RESULTS 
In this work, we have constructed the exact analytical solutions of 

the three flow problems of a unsteady unidirectional Maxwell fluid 

between two parallel plates. The presented analysis is valid for 

large and small times. To obtain the analytical solutions, we have 

successfully applied the Sumudu Transform to the proposed 

problems. The obtained results are valid for small times and match 

with those obtained by Laplace transform in Literature [20]. But, it 

shows that the Sumudu transform is much simpler and powerful 

tool than Laplace transform to solve the engineering and physical 

problems due to having units preserving properties and without 

resorting the frequency domain. Further, by using the compound 

function method new exact solutions are constructed. Finally, the 

special cases of the problems are discussed. 

In order to discuss some physical aspects of the Couette flows, the 

figures 1 and 2 have been plotted.  Fig. 1 contains graphs of the 

velocity ( , )u y t  corresponding to Maxwell and Newtonian fluids 

for the porosity parameter 0, and 0.     These diagrams are 

plotted verses the spatial coordinate  0, , 0.5, 0.012y h h     

and for V=0.75, 1.75,  and several values of the time t. For 

small values of time t, the velocity of Maxwell fluid is equal to zero 

near the bottom plate. Obviously, in the case when porosity 

parameter is zero the fluid velocity is bigger than in the 0.   For 

large values of time t the velocity profiles for Maxwell and 

Newtonian fluids become identically. Fig. 2 shows the influence of 

relaxation time   on the velocity field ( , )u y t . For small values of 

time t, the Maxwell fluid characterized by a bigger relaxation time 

has smaller velocity. This property is changed if the values of time t 

increase. Also, for large values of time t, the velocity profiles 

become identically. 
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Fig.1. Velocity profiles for Couette flows of Maxwell and 

Newtonian fluids (V = 0.75, λ = 1.75, ν = 0.012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Velocity profiles for Couette flows of Maxwell fluids (V = 

0.75, ν = 0.35 ) 

 

9. Appendix 
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z dz
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 
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 
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1 cos .
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n n

n k
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n n s a

 
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  
    

      
         (A2)    

 2

0

1
2 1,J st ds

s



           (A3)    

   2
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0 0

1 1
cos 2 cos ( ) ,k

k

s
J st ds C x J d dx

s xa


  

 
 
 

         (A4)    

where 2 , 1/ 4 / .k kx st C t a   
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